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Abstract

Dominator coloring of a graph is a proper (vertex) coloring with the property that

every vertex is either alone in its color class or adjacent to all vertices of at least one

color class. A dominated coloring of a graph is a proper coloring such that every

color class is dominated with at least one vertex. The dominator chromatic number of

corona products and of edge corona products is determined. Sharp lower and upper

bounds are given for the dominated chromatic number of edge corona products. The

dominator chromatic number of hierarchical products is bounded from above and the

dominated chromatic number of hierarchical products with two factors determined.

An application of dominated colorings in genetic networks is also proposed.
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1 Introduction

Graph colorings form one of the most investigated areas of graph theory. This is in

particular so because colorings of (vertices of) graphs form natural models for a vast

number of practical problems involving facility location problems in operational research.

It often happens that besides the requirement that adjacent vertices receive different colors,

some additional condition(s) on a coloring must be fulfilled. In this way new variants of

colorings appear, a relative recent and interesting variant is the following.

A dominator coloring of a graph G is a proper vertex coloring with the additional

property that every vertex u of G forms a color class, or u is adjacent to all vertices of

at least one color class. The smallest number of colors needed for a dominator coloring of

G is the dominator chromatic number χd(G) of G. This concept was studied for the first

by Gera, Horton, and Rasmussen [13], several papers followed afterwards. Chellali and

Maffray [7] proved, among other results, a very interesting fact that determining whether

χd(G) ≤ 3 holds can be accomplished in polynomial time. Moreover, they showed that

the dominator chromatic number of P4-free graphs can also be computed in polynomial

time. Gera [12] proved that if T is a nontrivial tree, then χd(G) ∈ {γ(T ) + 1, γ(T ) + 2},

and later Boumediene Merouane and Chellali [5] characterized trees T attaining each of

the possibilities. The dominator chromatic number of Cartesian products of P2 and P3

by arbitrary paths and cycles was determined in [9, 10]. Some additional Cartesian prod-

ucts, several direct products, and some corona products were studied in [17]. Dominator

colorings of Mycielskian graphs were investigated in [1].

A concept closely related to dominator colorings is the following. A proper coloring of

a graph G is a dominated coloring if each color class is dominated by at least one vertex,

that is, for each color class there exists a vertex that is adjacent to all the vertices of

the class. The minimum number of colors needed for a dominated coloring of G is the

dominated chromatic number χdom(G) of G. This concept was introduced in 2015 (the

paper being submitted in 2012 though) by Boumediene Merouane et al. [6] where they

adopted algorithmic approach for this problem and proved that if G is triangle-free, then

χdom(G) equals the total domination number of G. In [2] different variants of colorings

(including dominator and dominated ones) were compared mostly from the algorithmic

point of view and very many interesting results presented. Let us just emphasize the

dichotomy asserting that dominated coloring is polynomial on claw-free graphs while the

dominator coloring is NP-complete on claw-free graphs. This dichotomy indicated that
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although dominator colorings and dominated colorings appear quite similar, they are in

fact strikingly different.

We proceed as follows. In the rest of the introduction we first discuss applications of

dominated colorings and propose a new application in genetic networks. At the end of

the introduction standard definitions needed in this paper are listed. Then, in Section 2,

we determine the dominator chromatic number of corona products. It is significantly

different from the dominated chromatic number which was earlier determined in [11]. In

Section 3 we first determine the dominator chromatic number of edge corona products. For

the dominated chromatic number of such graphs we give sharp lower and upper bonds.

We get an equality in particular for edge corona products in which the first factor is

bipartite with minimum degree at least 2. In the final section we bound from above

the dominator chromatic number of hierarchical products and determine the dominated

chromatic number for the case of two factors.

1.1 Applications of dominated colorings

Already in 2014, Chen [8] provided an application of dominated coloring in social networks

for finding the minimum stranger groups who can become friends later by an intermediary.

We now propose another applicability in genetic networks as follows.

In a genetic interaction network G, genes (proteins) are represented as vertices (nodes)

and their relationships as edges. Some genes (proteins) do not have direct interactions with

each other, but they may be under regulation by a common gene(protein). Actually, the

common gene (protein) can regulate the function of the other genes (proteins), see [14, 15].

Therefore, the dominated coloring is to find the minimum groups of genes (proteins) in

the genetic (protein) interaction network with two below properties:

1. genes (proteins) in the same group do not have direct interactions with each other,

2. genes (proteins) in the same group are regulated by a common gene (protein).

1.2 Some definitions

If G is a graph we will denote its order with n(G) and its size with m(G). For a positive

integer n, we will use the notation [n] = {1, . . . , n}. The chromatic number of G is of

course denoted with χ(G). In a (proper) k−coloring of G, a color class is the set of
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vertices assigned the same color. If c : V (G) → [k] is (proper) coloring of G and i ∈ [k],

then let

CG(i) = {u ∈ V (G) : c(u) = i}

be the color class i. If G will be clear from the context, we will abbreviate its notation to

C(i).

A matching in a graph G is a set of nonadjacent edges of G. The matching number

α′(G) is the cardinality of a largest matching in G. If M is a matching, then a vertex is

M -matched (or just matched) if it is an endpoint of an edge from M . The vertex cover

number β(G) of G is the cardinality of a smallest set of vertices such that each edge has

at least one endpoint in the set.

2 Coloring corona products

The corona product G ◦H of graphs G and H is obtained from one copy of G and n(G)

copies of H by joining with an edge each vertex of the ith copy of H, i ∈ [n(G)], to the ith

vertex of G, cf. [19]. If g ∈ V (G), then the copy of H in G ◦H corresponding to g with

be denoted with Hg. We may consider the vertex set of G ◦H to be

V (G ◦H) = V (G)
⋃

g∈V (G)

V (Hg) .

The dominated chromatic number of corona products is already known.

Theorem 2.1. [11, Theorem 4.4] If G and H are graphs, then χdom(G◦H) = n(G)χ(H).

1
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6 6
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5 6

Figure 1: A dominator coloring of C4 ◦K2.
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A dominator coloring of the corona product C4 ◦K2 is shown in Fig 1. The dominator

chromatic number of Kn ◦K1 has been reported in [17]. We now give a general result for

the dominator chromatic number of corona products.

Theorem 2.2. If G and H are graphs, then χd(G ◦H) = n(G) + χ(H).

Proof. Set n = n(G) and define c : V (G ◦ H) → [n + χ(H)] as follows. First, color the

vertices of V (G) with pairwise different colors from [n]. Second, for each g ∈ V (G), let c

restricted to Hg be a χ(H)-coloring of H using colors from the set {n+1, . . . , n+ χ(H)},

see Fig. 1 again. Then c is a dominator coloring of G ◦H. Indeed, each vertex g ∈ V (G)

forms a color class of cardinality 1, while each vertex from Hg is adjacent to the color class

{g}. Therefore, χd(G ◦H) ≤ n+ χ(H).

It remains to prove that χd(G◦H) ≥ n+χ(H). Let c be an arbitrary dominator coloring

of G ◦H and suppose that c(g) = c(g′) for vertices g, g′ ∈ V (G) ⊆ V (G ◦H). Then we

claim that there exists a color class that lies completely in V (Hg). Let u ∈ V (Hg) and

suppose that c(u) = s. If C(s) = {u}, there is nothing to prove. Otherwise, |C(s)| ≥ 2

and hence u must dominate a color class r, where r 6= s. Note that r 6= c(g) because

ug′ /∈ E(G ◦H). But then C(r) ⊆ V (Hg), proving the claim. If C(s) = {u} then define a

coloring c′ of G ◦H by setting

c′(x) =











s; x = g ,

c(g); x = u ,

c(x); otherwise ,

otherwise, that is, if |C(s)| ≥ 2, define c′ with

c′(x) =











r; x = g ,

c(g); x ∈ V (Hg), c(x) = r ,

c(x); otherwise .

Note that in either of the two cases, c′ is a dominator coloring of G◦H that uses the same

number of colors as c. Moreover, c′ uses one more color on V (G) as c. Repeating this

construction as long as necessary, we arrive at a dominator coloring c′′ of G ◦H that uses

the same number of colors as c, and such that if g, g′ ∈ V (G), g 6= g′, then c′′(g) 6= c′′(g′).

In the rest we may without loss of generality assume that if g ∈ V (G), then c′′(g) ∈ [n].

Let g ∈ V (G) be the vertex with c′′(g) = 1. If c′′ restricted to Hg uses only colors bigger

than n, then clearly c′′ uses at least n + χ(H) colors. Suppose next that c′′ restricted to
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Hg uses some color i ∈ [n] and let g′ ∈ V (G) be the vertex with c′′(g′) = i. Clearly, i 6= 1.

We claim that c′′ restricted to Hg′ uses a color that is used only in Hg′ . For this sake let

u be an arbitrary vertex of Hg′ . We have nothing to prove if C ′′(u) = {u}. Otherwise, no

matter whether c′′(u) appears on some other vertex of Hg′ or elsewhere, the vertex x must

be adjacent to all the vertices of a color class that lies completely in Hg′ . It follows that

the color of this color class is used only in Hg′ , proving the claim. Hence each color used

in Hg is either bigger than n or leads to its private new color bigger than n. Therefore,

c′′ uses at least n + χ(H) colors, hence also c uses at least n+ χ(H) colors. As c was an

arbitrary dominator coloring of G ◦H we conclude that χd(G ◦H) ≥ n+ χ(H).

Note that Theorems 2.1 and 2.2 reveal that χdom and χd behave strikingly differently

on corona products. Roughly speaking, χdom is a quadratic, while χd is a linear invariant.

In particular, ff Γ is a bipartite graph and W is a connected graph of order k + 2, then

χdom(W ◦ Γ)− χd(W ◦ Γ) = 2(k + 2)− (k + 2)− 2 = k. Hence for each k ≥ 0 there exists

a graph G with χdom(G) − χd(G) = k.

3 Coloring edge corona products

The edge corona G ⋄ H of graphs G and H is obtained by taking one copy of G and

m(G) disjoint copies of H one-to-one assigned to the edges of G, and for every edge

gg′ ∈ E(G) joining g and g′ to every vertex of the copy of H associated to gg′, see [16, 18].

If gg′ ∈ E(G), then the copy of H in G ⋄H corresponding to e = gg′ will be denoted with

Hgg′ (or simply He). Hence we may consider the vertex set of G ⋄H to be

V (G ⋄H) = V (G)
⋃

gg′∈E(G)

V (Hgg′) .

The edge corona C4 ⋄K2 is shown in Fig. 2 along with its dominator coloring.

Theorem 3.1. If G and H are graphs, then χd(G ⋄H) = β(G) + χ(H) + 1.

Proof. Let K be a minimum vertex cover of G, so that |K| = β(G).

We first prove that χd(G ⋄ H) ≤ β(G) + χ(H) + 1. To reach this aim, consider the

following coloring c : V (G ⋄H) → [β(G) + χ(H) + 1]:

• color vertices of K injectively with colors 1, . . . , β(G);
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Figure 2: A dominator coloring of C4 ⋄K2.

• color vertices from V (G)−K with color β(G) + 1;

• for each e ∈ E(G), color He with colors {β(G) + 2, . . . , β(G) + χ(H) + 1}.

An example of such a coloring is given in Fig. 2. The coloring c is a dominator coloring

of G ⋄H. Indeed, each vertex g ∈ K forms a color class of cardinality one. Consider next

now a vertex u from some Hgg′ . As K is a vertex cover, we may without loss of generality

assume that g ∈ K. But then u is adjacent to the color class {g}.

It remains to prove that χd(G⋄H) ≥ β(G)+χ(H)+1. Let c be an arbitrary dominator

coloring of G ⋄H and suppose that there exists gg′ ∈ E(G) such that |C(c(g))| > 1 and

|C(c(g′))| > 1. In this case, we claim that there must exist a color class r that lies

completely in Hgg′ . Let u ∈ V (Hgg′) and suppose that c(u) = s. If C(s) = {u}, there is

nothing to prove. Otherwise, |C(s)| > 1 and hence u must dominate a color class r, where

r 6= s. Since c(g) 6= r and c(g′) 6= r we see that C(r) ⊆ V (Hgg′). By changing the colors

of certain vertices, we construct from c another dominator coloring c′ of G ⋄H as follows:

c′(x) =











r; x = g ,

c(g); x ∈ E(Hgg′), c(x) = r ,

c(x); otherwise .

Indeed, c′ is a dominator coloring because now u still dominates the color class r (which

consists of a single element). The coloring c′ uses the same number of colors as c. We use

this technique of recoloring to reach a dominator coloring c′′ of G ⋄H with this property

that for each gg′ ∈ E(G) at least one of |C ′′(c′′(g))| = 1 and |C ′′(c′′(g′))| = 1 holds.

Set K = {g ∈ V (G) : |C ′′(c′′(g))| = 1}. Because of the above property of c′′ for each

edge, K is a vertex cover of G and consequently |K| ≥ β(G). Clearly, c′′ does not use
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colors that are used on K for coloring of other vertices. Suppose first that |K| = n(G).

Then c′′ uses at least n(G) + χ(H) colors for coloring G ⋄H. Since n(G) ≥ β(G) + 1 it

follows that c′′ uses at least β(G) + χ(H) + 1 colors. Suppose second that |K| < n(G).

Then each proper coloring of the vertices from V (G⋄H)\K uses at least χ(H)+1 colors.

Indeed, if g /∈ K and e is an arbitrary edge having g as one of its endpoints, then the join

of g and He is a subgraph of G ⋄H which needs at least χ(H) + 1 colors. Hence also in

this case c′′ uses at least β(G) + χ(H) + 1 colors.

5

6 6

5

4 4

3

2 2

3

1 1

g1 g2

g'2

g'1

Figure 3: A dominated coloring of C4 ⋄K2.

Theorem 3.2. If G is a graph without pendant vertices, then

χdom(G ⋄H) ≥ α′(G)χ(H) + χdom(G).

Proof. Set r = α′(G) and let M = {g1g
′

1, . . . , grg
′

r} be a maximum matching of G. Our

proof has three steps. First, we observe that we need at least r χ(H) colors for coloring

all the vertices from Hgig
′

i
, i ∈ [r]. Second, we show that we need at least r χ(H) colors

for coloring the vertices of all He where e /∈ M . (We apply r χ(H) colors used in the first

step for coloring these copies). Third, we prove that the colors used in the previous steps

cannot be assigned to the vertices of G.

The fact that we need at least r χ(H) colors for coloring all the vertices from Hgig
′

i
,

i ∈ [r], follows from the assumption that the edges gig
′

i form a matching and hence a

vertex from Hgjg
′

j
and a vertex from Hgkg

′

k
, where k 6= k′, have no common neighbor. For

the second step of our proof consider an edge gig
′

i and a neighbor of gi different from g′i,

say g. (Such a neighbor exists since we have assumed that G has no pendant vertices.)

Let Xi denote the set of colors used on Hgig
′

i
which are also used in Hgig, that is, denoting
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the corresponding coloring with c we set

Xi = {c(v) : v ∈ V (Hgig
′

i
)} ∩ {c(v) : v ∈ V (Hgig)}.

Similarly, suppose that X ′

i denotes the set of colors of Hgig
′

i
which c uses on Hg′ig

′ where

g′ 6= gi. So a dominated coloring of G ⋄ H can use some colors of Hgig
′

i
for coloring

the vertices of Hgig where g (that g 6= g′i) is a neighbour of gi which forms Xi, and

use remaining colors of Hgig
′

i
for coloring the vertices of Hg′ig

′ where g′ (that g′ 6= gi)

is a neighbour of g′i which forms X ′

i. (For more illustration, see Fig. 3. In this figure,

M = {g1g
′

1, g2g
′

2} is a maximum matching of C4, {1, 2} is the set of colors used in Hg1g
′

1
,

{3, 4} is the set of colors used in Hg2g
′

2
, X1 = ∅, X ′

1 = {1, 2}, X2 = ∅, X ′

2 = {3, 4}.) Thus,

|Xi ∪X ′

i| ≤ χ(H) and |Xi ∩X ′

i| = 0, because if there exists k ∈ (Xi ∩X ′

i), then the color

class C(k) would not be dominated by a vertex. Also, since G does not have pendant

vertices, then |E(G) \M | ≥ r.

Since M is a maximum matching, an edge e ∈ E(G) \ M is either adjacent to two

members of M , say e = g′igj, or e is adjacent to one member of M , say e = gig. In the first

case, vertices of Hg′igj
are colored with colors of X ′

i ∪Xj , and so |X ′

i ∪Xj | ≥ χ(H). In the

second case, vertices of Hgig are colored with colors of Xi, and so |Xi| ≥ χ(H). Therefore,

at least r χ(H) colors are needed for coloring the vertices of He’s in G ⋄H, where e /∈ M .

To complete our proof, it is sufficient to show that the colors of
⋃r

i=1(Xi ∪X ′

i) cannot

be used in vertices of G. If ggi ∈ E(G) and g 6= g′i, then c(g) /∈ Xi, and (since g is adjacent

to all vertices of Hgig) c(g) /∈ X ′

i. Therefore, each coloring of G ⋄H needs at least rχ(H)

colors for coloring of copies of H that cannot be applied for vertices of G. We conclude

that χdom(G ⋄H) ≥ α′(G)χ(H) + χdom(G).

Consider C4 ⋄K2 depicted in Fig. 3. M = {g1g
′

1, g2g
′

2} is a maximum matching of C4

and so α′(C4) = 2. Then, by Theorem 3.2,

χdom(C4 ⋄K2) ≥ α′(C4)χ(K2) + χdom(C4) = 2× 2 + 2 = 6.

On the other hand, the coloring from Fig. 3 demonstrates that χdom(C4 ⋄K2) ≤ 6, hence

the bound of Theorem 3.2 is sharp.

Theorem 3.3. If G has k pendant vertices, then χdom(G ⋄H) ≥ α′(G)χ(H) + k.

Proof. Set r = α′(G) and let M = {g1g
′

1, . . . , grg
′

r} be a maximum matching of G. As in

the proof of Theorem 3.2 we infer that at least r χ(H) colors are required in a dominated
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coloring c for the vertices from Hgig
′

i
, i ∈ [r]. Let g be a pendant vertex of G. If g is

an end-point of an edge from M , then c(g) is different from all the colors used on Hgig
′

i
,

i ∈ [r]. Otherwise, having in mind that M is a maximum matching, g is adjacent to

a matched vertex, say gi. But then gi requires an additional color. Hence each of the

pendant vertices adds one more color to c.

Theorem 3.3 implies that χdom(P4 ⋄ K4) ≥ α′(P4)χ(K4) + k = 2 × 4 + 2 = 10. On

the other hand, it is not difficult to find a dominated coloring of P4 ⋄K4 using 10 colors.

Hence also the bound of Theorem 3.3 is sharp.

In Theorem 3.2 and 3.3 we have bounded χdom(G ⋄H) from below using the matching

number of G. In our next result we bound χdom(G⋄H) from above using the vertex cover

number of G.

Theorem 3.4. If G and H are graphs, then χdom(G ⋄H) 6 χdom(G) + β(G)χ(H), with

equality when G is bipartite graph without pendant vertices.

Proof. Set β = β(G) and let K = {v1, . . . , vβ} be a vertex cover of G. Partition E(G) into

subsets of edges E1, . . . , Eβ(G), such that if e ∈ Ei, then vi is an endpoint of e. It is clear

that such a partition always exists since K is a vertex cover.

Let c be a coloring of G ⋄H defined as follows. First, for each set of edges Ei reserve

private χ(H) colors and color with then each of the subgraphs He, e ∈ Ei. Second, color

the vertices of G with additional χdom(G) colors. (See Fig. 3 for an example of such a

coloring. In this figure, K = {g′1, g
′

2}.) Thus c is a coloring using χdom(G) + β(G)χ(H)

colors. Moreover, c is a dominated coloring because each color class on G is dominated by

a vertex from G, while the other color classes are dominated by appropriate vertices from

K. Hence χdom(G ⋄H) ≤ χdom(G) + β(G)χ(H).

Now, suppose G is a bipartite graph without pendant vertices. Then, by Theorem 3.2,

χdom(G ⋄H) ≥ α′(G)χ(H) + χdom(G). Recall that the famous KönigEgerváry Theorem

asserts that if G is a bipartite graph, then α′(G) = β(G). Therefore, χdom(G ⋄ H) =

β(G)χ(H) + χdom(G).
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4 Hierarchical products

Suppose {Gi = (Vi, Ei)}
N
i=1, is a family of graphs having a distinguished or root vertex r.

Following Barriére et al. [3, 4], the hierarchical product H = GN ⊓ . . . ⊓ G2 ⊓ G1 is the

graph with vertices as N -tuples (xN , . . . , x1), xi ∈ Vi, and edges defined as follows:

(xN , . . . , x3, x2, x1) ∼



































(xN , . . . x3, x2, y1); y1 ∼ x1 in G1,

(xN , . . . , x3, y2, x1); y2 ∼ x2 in G2 and x1 = r,

(xN , . . . , y3, x2, x1); y3 ∼ x3 in G3 and x1 = x2 = r,
...

...

(yN , . . . , x3, x2, x1); yN ∼ xN in GN and x1 = x2 = · · · = xN−1 = r .

This product has plenty of applications in computer science. We first bound its dominator

chromatic number.

Theorem 4.1. If {Gi = (Vi, Ei)}
N
i=1 is a family of graphs (with a root vertex), then

χd(GN ⊓ · · · ⊓G2 ⊓G1) ≤ χd(G1)

N
∏

i=2

n(Gi) .

Proof. Let c be a dominator coloring of G1 using χd(G1) colors. Set H = GN ⊓ · · · ⊓

G2 ⊓ G1 and define a coloring f of H with f(xiN , . . . , xi2 , xi1) = (iN , . . . , i2, c(xi1)) for

(xiN , . . . , xi2 , xi1) ∈ V (H).

If (xiN , . . . , xi2 , xi1)(xjN , . . . , xj2 , xj1) is an edge of H, then there exist k ∈ {i1, . . . , iN}

and l ∈ {j1, . . . , jN} such that xkxl ∈ ∪N
i=1E(Gi). Either way, f(xiN , . . . , xi2 , xi1) 6=

f(xjN , . . . , xj2 , xj1) and so f is a proper coloring of H with χd(G1)
∏N

i=2 n(Gi) colors.

It remains to prove that f is a dominator coloring. It suffices to show that each vertex

of H dominates at least one color class. Denote the color classes of G corresponding

to c briefly with Ci = CG1
(i), i ∈ [χd(G1)]. Then by definition of f , the set Vij =

{(xiN , . . . , xi2 , xi1) | xi1 ∈ Vj}, where i ∈
[

∏N
i=2 n(Gi)

]

and j ∈ [χd(G1)], is a color class of

H with respect to f . Consider a vertex (xiN , . . . , xi2 , xi1) ∈ V (H). Since c is a dominator

coloring of G1, there exists a color class Cj which is dominated by xi1 . Therefore, the

color class Vij is dominated by (xiN , . . . , xi2 , xi1) and we are done.

Note that the graph H ⊓ G is obtained from n(G) copies of H and one copy of G. In

the following we will use Hi to denote the copies of H, and G′ to denote the copy of G in

H ⊓G. Also, ri will be the root vertex of Hi.
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Theorem 4.2. If G is a graph and H a rooted graph with the root r, then

χdom(H ⊓G) =







n(G)χdom(H); χdom(H) = χdom(H − r),

n(G)χdom(H − r) + I(r)χdom(G); otherwise,

where I(r) = 0 if there exists an optimal dominated coloring of H such that r is adjacent

to all vertices of at least one color class, otherwise I(r) = 1.

Proof. It is straightforward to see that χdom(H ⊓ G) is at most the claimed expressions,

hence it remains to prove that

χdom(H ⊓G) ≥







n(G)χdom(H); χdom(H) = χdom(H − r),

n(G)χdom(H − r) + I(r)χdom(G); otherwise .

By definition of the dominated coloring, there does not exist vertices from V (Hi− ri) and

V (Hj − rj), where i 6= j, with the same color. Hence at least n(G)χdom(H − r) different

colors are needed in a dominated coloring of the subgraphs Hi and so χdom(H ⊓ G) ≥

|V (G)|χdom(H−r). So, if χdom(H) = χdom(H−r), then χdom(H⊓G) ≥ n(G)χdom(H−r) =

n(G)χdom(H). Also, in the case that in some optimal dominated coloring r is adjacent

to all vertices of at least one color class in H, we can assign the color of the class which

is dominated with ri to rj if rirj ∈ E(H ⊓ G), and so H ⊓ G could be colored with

n(G)χdom(H− r) different colors. Otherwise, we need at least χdom(G) different colors for

dominated coloring of vertices ofG′, and so χdom(H⊓G) ≥ χdom(G)+n(G)χdom(H−r).

Let G1, . . . , Gk be rooted graphs with root vertices r1, . . . , rk, respectively. The bridge-

cycle graph BC(G1, . . . , Gk; r1, . . . , rk) is the graph obtained from the graphs G1, . . . , Gk

by joining the vertices ri and ri+1 for all i ∈ [r − 1] and connecting the vertices r1 and rk

by an edge, see Fig. 4.

G1

G2 Gk-1

Gk

r1 rk

r2 rk-1

Figure 4: The bridge-cycle graph BC(G1, . . . , Gk; r1, . . . , rk).
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If G1 = · · · = Gk = G, then we have BC(G1, . . . , Gk; r1, . . . , rk) ∼= G ⊓Ck. Combining

the fact that χdom(Ck) =







k
2 if 4 | k,

⌊k2⌋+ 1 otherwise,
, see [11], and Theorem 2.8, we obtain

that χdom(BC(G, . . . , G; r, . . . , r)) = χdom(G ⊓ Ck). Consequently,

χdom(G ⊓ Ck) =



















kχdom(G); χdom(G) = χdom(G− r) ,

kI(r)
2 + kχdom(G− r); χdom(G) 6= χdom(G− r) and 4 | k ,

(⌊k

2 ⌋+ 1)I(r) + kχdom(G− r); χdom(G) 6= χdom(G− r) and 4 ∤ k .
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